A unified treatment of Schrodinger's equation for anharmonic and double well potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 221303
(http://iopscience.iop.org/0305-4470/22/9/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 08:33

Please note that terms and conditions apply.

A unified treatment of Schrödinger's equation for anharmonic and double well potentials

B L Burrows \dagger, M Cohen \ddagger and Tova Feldmann \ddagger
+ Department of Mathematics, North Staffordshire Polytechnic, Beaconside, Stafford ST180AD, UK
\ddagger Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel

Received 19 September 1988

Abstract

We exploit some exactly soluble model potentials $V^{N}(\alpha, \beta)=V(A, B)+\lambda x^{6}$ in order to extrapolate (as $\lambda \rightarrow 0$) reliable eigenvalues of the one-dimensional Schrödinger equations with either anharmonic or symmetric double well potentials of the form $V(A, B)=$ $\frac{1}{2} A x^{2}+B x^{4}(B>0)$. Our procedure, which corresponds to low-order Rayleigh-Schrödinger perturbation theory, is found to be competitive with both high-order Padé summation of conventional RSPT and large-scale variational calculations using harmonic oscillator basis functions.

1. Introduction

One standard procedure for calculating bound-state solutions of the non-relativistic Schrödinger equation

$$
\begin{equation*}
H \psi=E \psi \quad\langle\psi \mid \psi\rangle=1 \tag{1.1}
\end{equation*}
$$

is to employ Rayleigh-Schrödinger (RS) perturbation theory (PT). Conventional applications of RSPT begin with the formal decomposition of a slightly generalised Hamiltonian $H(\lambda)$, usually written as

$$
\begin{equation*}
H(\lambda)=H_{0}+\lambda H_{1} . \tag{1.2}
\end{equation*}
$$

Here, H_{0} is a soluble model Hamiltonian and λH_{1} is supposed small by comparison with H_{0}. The expansion parameter λ need not necessarily have physical significance; it serves mainly to monitor the terms of successively higher orders of the power series solutions of $H(\lambda)$:

$$
\begin{equation*}
\psi(\lambda)=\psi_{0}+\lambda \psi_{1}+\lambda^{2} \psi_{2}+\ldots \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
E(\lambda)=E_{0}+\lambda E_{1}+\lambda^{2} E_{2}+\ldots \tag{1.4}
\end{equation*}
$$

A solution of $H(\lambda)$ is often required only for a few isolated values of λ (sometimes, only for the single value $\lambda=1$) but in order to be meaningful, the expansions (1.3) and (1.4) for $\psi(\lambda)$ and $E(\lambda)$ are assumed to converge in some region of the complex λ-plane. To determine this region of convergence of $E(\lambda)$, it is generally necessary to compute the large- n dependence of the high-order coefficients $\left\{E_{n}\right\}$, itself a formidable task. Moreover, for the RSPT solution to be useful numerically, convergence of the energy expansion (1.4) for any particular value λ of interest should be reasonably rapid and be based on as few low-order coefficients as possible.

Much of the recent work on RSPT has confirmed the suspicion that many energy series (1.4) are in fact asymptotic, but that nevertheless, useful numerical results can be extracted from the leading expansion coefficients $\left\{E_{n}\right\}$ by means of sophisticated summation techniques (see, for example, Bender and Orszag 1978). A generally convenient representation of the energy then takes the form of a rational fraction

$$
\begin{equation*}
E(\lambda) \sim[L / M]=\frac{P_{0}+\lambda P_{1}+\ldots+\lambda^{L} P_{L}}{1+\lambda Q_{1}+\ldots+\lambda^{M} Q_{M}} \tag{1.5}
\end{equation*}
$$

which often yields acceptable accuracy for a wide range of λ values of physical interest and for L, M not too large.

Now the whole procedure of conventional RSPT may be viewed alternatively as follows. Instead of solving $H\left(\lambda_{0}\right)$ exactly for an isolated parameter value λ_{0}, we instead solve $H(\lambda)$ approximately for some range of values of λ, but only up to some predetermined power of λ; this solution is only approximate insofar as higher-order terms are not calculated. Nevertheless, an energy expression such as (1.5), based on only the first few orders of RSPT, is often remarkably accurate (Cohen and Feldmann 1981).

However, it may occasionally happen that it is possible to obtain an exact solution of $H(\lambda)$ for a discrete set of isolated values $\lambda_{i}(i=1, \ldots, L+M+1)$ but not for some particular λ_{0} of interest. An expression of the form of (1.5) may then be constructed and used to interpolate (or extrapolate) a value for $E\left(\lambda_{0}\right)$ from the set $\left\{E\left(\lambda_{i}\right)\right\}$. A procedure which is conceptually very similar to the present one was employed some years ago to calculate electric dipole polarisabilities of atoms within the Hartree-Fock approximation (Cohen and Roothaan 1965). However, to our knowledge, no previous application has employed exact solutions.

In the present work, we apply these ideas to a set of one-dimensional Schrödinger equations with potentials of the general form:

$$
\begin{equation*}
V(A, B)=\frac{1}{2} A x^{2}+B x^{4} \quad(B>0) \tag{1.6}
\end{equation*}
$$

This set includes two subsets of some general interest, namely the quartic anharmonic oscillator $(A>0)$ and the symmetric double well potential ($A<0$). The pure quartic oscillator $(A=0)$ may be viewed as a natural bridging case between these subsets. Our procedure is as follows. First, we shall obtain the lower eigenvalue spectrum for the model potentials

$$
\begin{equation*}
V^{N}(\alpha, \beta)=\frac{1}{2}\left[\alpha^{2}-(2 N+3) \beta\right] x^{2}+\alpha \beta x^{4}+\frac{1}{2} \beta^{2} x^{6} \tag{1.7}
\end{equation*}
$$

which admit of exact solutions for arbitrary α and β, provided that N is any integer. We then choose (N, α, β) for a series of integers N so that

$$
\begin{equation*}
V^{N}(\alpha, \beta)=V(A, B)+\lambda x^{6} \quad \lambda=\frac{1}{2} \beta^{2} . \tag{1.8}
\end{equation*}
$$

Finally, we represent the corresponding $E^{N}(\alpha, \beta)$ by means of a rational fraction (1.5), and extrapolate from a series of small (but finite) values of λ to obtain the limit

$$
\begin{equation*}
E(A, B)=\lim _{\lambda \rightarrow 0} E^{N}(\alpha, \beta) . \tag{1.9}
\end{equation*}
$$

In some sense, our procedure is the reverse of standard RSPT, insofar as we seek results in the limit as λ becomes steadily smaller. We may therefore anticipate that this process will prove more reliable than the usual applications with increasing λ.

2. Solutions for the model Hamiltonian $H^{N}(\alpha, \beta)$

In order to obtain solutions of the Hamiltonian

$$
\begin{equation*}
H^{N}(\alpha, \beta)=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V^{N}(\alpha, \beta) \tag{2.1}
\end{equation*}
$$

it is convenient to change the scale according to

$$
\begin{equation*}
x \rightarrow x / \alpha^{1 / 2} \quad \beta / \alpha^{2} \rightarrow \gamma \tag{2.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
H^{N}(\alpha, \beta) \rightarrow \alpha h^{N}(\gamma) \quad h^{N}(\gamma)=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2}[1-(2 N+3) \gamma] x^{2}+\gamma x^{4}+\frac{1}{2} \gamma^{2} x^{6} \tag{2.3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
E^{N}(\alpha, \beta) \rightarrow \alpha E^{N}(1, \gamma) . \tag{2.4}
\end{equation*}
$$

Standard analysis now shows that all eigenfunctions of $h^{N}(\gamma)$ have definite (even or odd) parity. The even-parity eigenfunctions may be written in the form

$$
\begin{equation*}
\psi_{2 k}^{N}=\exp \left[-\left(\frac{1}{2} x^{2}+\frac{1}{4} \gamma x^{4}\right)\right] \sum_{i=0}^{\infty} a_{2 k, 2 i}^{N} \frac{\left(\gamma x^{2}\right)^{i}}{i!} \quad(k=0,1,2, \ldots) \tag{2.5}
\end{equation*}
$$

and the odd-parity eigenfunctions

$$
\begin{equation*}
\psi_{2 k+1}^{N}=\exp \left[-\left(\frac{1}{2} x^{2}+\frac{1}{4} \gamma x^{4}\right)\right] x \sum_{i=0}^{x} a_{2 k+1,2 i+1}^{N} \frac{\left(\gamma x^{2}\right)^{i}}{i!} \quad(k=0,1,2, \ldots) . \tag{2.6}
\end{equation*}
$$

For simplicity in the following, we write $a_{2 i}$ for $a_{2 k, 2 i}^{N}, a_{2 i+1}$ for $a_{2 k+1,2 i+1}^{N}$ and E for $E^{N}(1, \gamma)$. The appropriate recurrence relations for the coefficients $\left\{a_{2 i}\right\}$, are then found to be

$$
\begin{equation*}
\mathrm{i}(N+2-2 i) \gamma a_{2 i-2}+\left[E-\left(2 i+\frac{1}{2}\right)\right] a_{2 i}+(2 i+1) a_{2 i+2}=0 \tag{2.7}
\end{equation*}
$$

and for the coefficients $\left\{a_{2 i+1}\right\}$:

$$
\begin{equation*}
\mathrm{i}(N+1-2 i) \gamma a_{2 i-1}+\left[E-\left(2 i+\frac{3}{2}\right)\right] a_{2 i+1}+(2 i+3) a_{2 i+3}=0 . \tag{2.8}
\end{equation*}
$$

In general, these equations lead to separate Hill determinants of infinite order, which must be truncated and solved for successively higher finite order $k, k+1, k+2, \ldots$, until numerical convergence of the eigenvalues is sufficient to allow reliable extrapolation to $k \rightarrow \infty$.

However, if N is any even integer ($N=2 M$, say) the Hill determinant derived from (2.7) splits into a finite $(M+1)$-dimensional determinant for the lowest $(M+1)$ even-parity solutions, together with an infinite-order determinant for the remainder. The finite determinant may then be solved exactly (albeit numerically) and the corresponding lowest ($M+1$) even-parity eigenfunctions all have the form:

$$
\begin{equation*}
\psi_{2 k}^{2 M}=\exp \left[-\left(\frac{1}{2} x^{2}+\frac{1}{4} \gamma x^{4}\right)\right] \sum_{i=0}^{M} a_{2 k, 2 i}^{2 M} \frac{\left(\gamma x^{2}\right)^{i}}{i!} \quad(k=0,1, \ldots, M) \tag{2.9}
\end{equation*}
$$

The remaining even-parity solutions, and all odd-parity solutions contain infinite series, and are given by (2.5) and (2.6).

Similarly, if N is an odd integer ($N=2 M+1$, say) the Hill determinant derived from (2.8) splits into a finite ($M+1$)-dimensional determinant for the lowest ($M+1$) odd-parity solutions, together with an infinite-order determinant for the remainder.

For example, in the case $N=2 M=6$, and if we write for convenience $E=z+\frac{7}{2}$, the lowest four even-parity solutions satisfy

$$
\left[\begin{array}{cccc}
z-3 & 1 & 0 & 0 \tag{2.10}\\
6 \gamma & z-1 & 3 & 0 \\
0 & 8 \gamma & z+1 & 5 \\
0 & 0 & 6 \gamma & z+3
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{2} \\
a_{4} \\
a_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

In summary, for any given integer value of N, the low-lying eigenvalues of $H^{N}(\alpha, \beta)$ can be written conveniently in one of the forms:

$$
N=2 M \quad E_{2 k}(\alpha, \beta)=\alpha\left[z_{k}(\gamma)+M+\frac{1}{2}\right] \quad(k=0, \ldots M)
$$

or

$$
\begin{equation*}
N=2 M+1 \quad E_{2 k+1}(\alpha, \beta)=\alpha\left[z_{k}(\gamma)+M+\frac{3}{2}\right] \quad(k=0, \ldots M) \tag{2.12}
\end{equation*}
$$

where $z_{k}(\gamma)$ satisfies a polynomial equation of degree $M+1$. That all roots $z_{k}(\gamma)$ are necessarily real follows from the tridiagonal form of these Hill determinant equations. For convenience, we gather in the appendix the explicit equations for all $N \leqslant 9$.

3. Solutions for $H(A, B)$

To obtain eigenvalues for $H(A, B)$, we now equate the coefficients of x^{2} and x^{4} in $V^{N}(\alpha, \beta)$ and $V(A, B)$:

$$
\begin{align*}
& \alpha^{2}-(2 N+3) \beta=A \tag{3.1}\\
& \alpha \beta=B . \tag{3.2}
\end{align*}
$$

In order to describe bound states, we require a real solution with $\beta>0$. For $B>0$, it is easily verified that such a solution always exists. For any given pair of values of A and B, we thus obtain a set of parameters $\alpha, \gamma=\beta / \alpha^{2}$ and $\lambda=\beta^{2} / 2$ for each integral value of N considered. The energy calculated for successive (even or odd) values of N may then be fitted to (1.5), and finally extrapolated to $\lambda \rightarrow 0$.

For sufficiently large N, a solution of (3.1) and (3.2) is given asymptotically by

$$
\begin{equation*}
\alpha \sim(2 N+3)^{1 / 3} B^{1 / 3} \quad \gamma \sim(2 N+3)^{-1} \quad \lambda \sim B^{4 / 3}(2 N+3)^{-2 / 3} / 2 \tag{3.3}
\end{equation*}
$$

independent of both the magnitude and the sign of A. Hence, the convergence of $E(\lambda)$ to E_{0} is ultimately controlled mainly by the factor $(2 N+3)^{-2 / 3}$, and even the effect of B should be negligible if N is sufficiently large. Thus, there appears to be no difference in principle between the cases $A>0$ (anharmonic oscillator), $A=0$ (pure quartic oscillator) and $A<0$ (double well potential), although the asymptotic results of (3.3) become exact for all $N \geqslant 0$ only in the limiting case when $A=0$. However, for different given values of A and B, we expect that the exact solutions $E^{N}(\alpha, \beta)$ of $H^{N}(\alpha, \beta)$ will reveal different rates of convergence towards $E(A, B)$ for low N.

Note that, quite generally, the energy $E(A, B)$ satisfies the scaling relation:

$$
\begin{equation*}
E\left(\eta^{2} A, \eta^{3} B\right)=\eta E(A, B) \tag{3.4}
\end{equation*}
$$

and in particular (provided $A, B \neq 0$)

$$
\begin{equation*}
E(A, B)=|A|^{1 / 2} E\left(1, C^{-3 / 2}\right)=B^{1 / 3} E(C, 1) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
C=|A| / B^{2 / 3} . \tag{3.6}
\end{equation*}
$$

As we shall see, convergence is most rapid when C is large. Note that under the transformation $A \rightarrow \eta^{2} A, B \rightarrow \eta^{3} B$ of (3.4), C of (3.6) is independent of η, as is $\gamma=\beta / \alpha^{2}$ when α, β are determined from (3.1) and (3.2).

4. Some bounding properties for the eigenvalues

It is clear from the definition of $V^{N}(\alpha, \beta)$ in (1.7) that for fixed values of α and β and for all $M \geqslant N>0$

$$
\begin{equation*}
V^{M}(\alpha, \beta) \leqslant V^{N}(\alpha, \beta) \tag{4.1}
\end{equation*}
$$

Consequently, the ordered eigenvalues of $H^{M}(\alpha, \beta)$ and $H^{N}(\alpha, \beta)$ satisfy (see, for example, Löwdin 1965)

$$
\begin{equation*}
E_{k}^{M}(\alpha, \beta) \leqslant E_{k}^{N}(\alpha, \beta) \quad(k=0,1, \ldots) \tag{4.2}
\end{equation*}
$$

so that, for each k, the eigenvalue $E_{k}^{N}(\alpha, \beta)$ is bounded from above by $E_{k}^{N-1}(\alpha, \beta)$ and from below by $E_{k}^{N+1}(\alpha, \beta)$.

However, what we actually calculate are eigenvalues of $H^{N}\left(\alpha_{N}, \beta_{N}\right)$ for a series of successive (even or odd) integer values of N, with α_{N}, β_{N} chosen according to (3.1) and (3.2) for fixed values of A and B so that α_{N}, β_{N} are changing with N. Now

$$
\begin{equation*}
V^{N}\left(\alpha_{N}, \beta_{N}\right)=V(A, B)+\frac{1}{2} \beta_{N}^{2} x^{6} \tag{4.3}
\end{equation*}
$$

and it is easily shown that, for $M \geqslant N$,

$$
\begin{equation*}
0 \leqslant \beta_{M} \leqslant \beta_{N} \tag{4.4}
\end{equation*}
$$

so that the ordered eigenvalues of $H(A, B), H^{M}\left(\alpha_{M}, \beta_{M}\right)$ and $H^{N}\left(\alpha_{N}, \beta_{N}\right)$ also satisfy

$$
\begin{equation*}
E_{k}(A, B) \leqslant E_{k}^{M}\left(\alpha_{M}, \beta_{M}\right) \leqslant E_{k}^{N}\left(\alpha_{N}, \beta_{N}\right) \quad(k=0,1, \ldots) . \tag{4.5}
\end{equation*}
$$

Thus, for successive positive integer values of N, the eigenvalues of $H^{N}\left(\alpha_{N}, \beta_{N}\right)$ form steadily decreasing sequences which converge from above to the eigenvalues of $H(A, B)$. These results are also independent of the magnitude and sign of A.

In the particular case of double well potentials, it may be more convenient to write the potential

$$
\begin{equation*}
V(-A, B)=-\frac{1}{2} A x^{2}+B x^{4} \quad(A, B>0) \tag{4.6}
\end{equation*}
$$

and note that there is a local maximum at $x=0$ where $V_{\max }=0$, and minima at $x= \pm \frac{1}{2}(A / B)^{1 / 2}$ where $V_{\text {min }}=-\frac{1}{16} A^{2} / B$. A few of the lower levels of $H(-A, B)$ may then lie below zero energy, and we may obtain an upper bound to the number of such levels as follows.

For all real p, the potential $V(-A, B)$ is everywhere bounded below by the harmonic potential

$$
\begin{equation*}
V(p)=-\frac{1}{16} \frac{\left(A+p^{2}\right)^{2}}{B}+\frac{1}{2} p^{2} x^{2} \tag{4.7}
\end{equation*}
$$

whose exact eigenvalues are given by

$$
\begin{equation*}
E_{k}(p)=\left(k+\frac{1}{2}\right) p-\frac{1}{16}\left(A+p^{2}\right)^{2} / B \quad(k=0,1, \ldots) \tag{4.8}
\end{equation*}
$$

The number m of negative energy levels of $V(p)$ satisfies

$$
\begin{equation*}
m \leqslant \frac{1}{16}\left(A+p^{2}\right)^{2} / B p+\frac{1}{2} \tag{4.9}
\end{equation*}
$$

and m clearly provides an upper bound to the number of negative energy levels of $V(-A, B)$. However, the parameter p is still at our disposal, and if we minimise m as a function of p, we obtain the least upper bound

$$
\begin{equation*}
m \leqslant \frac{1}{B}\left(\frac{A}{3}\right)^{3 / 2}+\frac{1}{2}=\left(\frac{C}{3}\right)^{3 / 2}+\frac{1}{2} \tag{4.10}
\end{equation*}
$$

where the quantity C is exactly as in (3.6).

5. Some representative results for small \mathbf{N}

Traditionally, anharmonic oscillators with $A>0$ and $A \gg B$ have been treated by RSPT starting with the harmonic oscillator model (coresponding to $B=0$), but the energy series is asymptotic (Simon 1970), and fails to converge even for quite small B, particularly for excited states. Nevertheless, accurate results can be obtained from the RSPT series coefficients by means of Padé summation (see, for example, Simon 1970, Bender and Orszag 1978). Our procedure is more efficient, as we shall see.

As a first example, consider

$$
\begin{equation*}
V=\frac{1}{2} x^{2}+\frac{1}{100} x^{4} \tag{5.1}
\end{equation*}
$$

(i.e. $A=1, B=\frac{1}{100}$). Table 1 displays the exact results obtained for the lowest six states of $V^{N}(\alpha, \beta)$, calculated with $N \leqslant 10$ for even-parity states, and with $N \leqslant 11$ for

Table 1. Eigenvalues of $V^{N}(\alpha, \beta)=\frac{1}{2} x^{2}+\frac{1}{100} x^{4}+\lambda x^{6}(C=21.54)$.

N	$\lambda \dagger$	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
0	4.8564	0.507338	-	-	-	-	-
1	4.7673	-	1.536180	-	-	-	-
2	4.6828	0.507335	-	2.592615	-	-	-
3	4.6026	-	1.536162	-	3.675241	-	-
4	4.5263	0.507332	-	2.592556	-	4.782821	-
5	4.4536	-	1.536146	-	3.675108	-	5.914244
6	4.3842	0.507330	-	2.592502	-	4.782574	-
7	4.3179	-	1.536130	-	3.674986	-	5.913845
8	4.2544	0.507328	-	2.592453	-	4.782348	-
9	4.1935	-	1.536117	--	3.674874	-	5.913478
10	4.1351	0.507326	-	2.592408	-	4.782141	-
11	4.0790	-	1.536104	-	3.674772	-	5.913141
$N \rightarrow \infty \ddagger$							
[1/0]	0.0	0.507256	1.535649	2.590851	3.671114	4.774962	5.901130
[1/1]	0.0	0.507256	1.535649	2.590845	3.671083	4.774874	5.901120
Variational§		0.507256	1.535648	2.590846	3.671095	4.774913	5.901027

[^0]odd-parity states. For each value of N, we list the calculated values of λ as well as the derived energies. Also listed are the coefficients P_{0} obtained by fitting the exact results at the lowest available values of N for each state to the rational fraction [L / M] of (1.5). In this example, λ is very small even for $N=0$, and it is therefore not surprising that our extrapolations based on only two or three calculated values reproduce the variational values obtained with a fairly large basis of 25 harmonic oscillator functions (Burrows and Core 1984, Burrows et al 1988).

We list only exact values of the calculated energy levels, so that even eigenvalues are given only for even N and odd eigenvalues only for odd N. It would be possible to obtain approximate values at intermediate values of N in each case, but these would contribute nothing towards increasing the accuracy of the extrapolations as $N \rightarrow \infty$.

Next, we consider the example

$$
\begin{equation*}
V=\frac{1}{2} x^{2}+\frac{1}{16} x^{4} \tag{5.2}
\end{equation*}
$$

which was expected to display rather poorer convergence since here $C \sim 6.35$ by comparison with $C \sim 21.54$ in the previous case. Results are gathered in table 2 for the lowest six states (three of each parity) together with the coefficient P_{0} obtained from the [1/1] approximant fited at the three lowest N values available for each state. These approximations also reproduce the directly computed values for all higher N to five or six digits. Although the relevant λ values are now two orders of magnitude larger than those of table 1 our extrapolated values are still remarkably accurate.

A more stringent test is provided by the example

$$
\begin{equation*}
V=\frac{1}{8} x^{2}+\frac{1}{8} x^{4} \tag{5.3}
\end{equation*}
$$

for which $C=1$. Our results are presented in table 3 , together with the coefficients P_{0} of [$1 / 1]$ and [2/2] approximants, which may be compared with both variational and Padé summed high-order RSPT values (Bender and Orszag 1978). Even here, our results are quite satisfactory, even though the λ values are now quite large for the smaller N

Table 2. Eigenvalues of $V^{N}(\alpha, \beta)=\frac{1}{2} x^{2}+\frac{1}{16} x^{4}+\lambda x^{6}(C \simeq 6.35)$.

N	λ^{\dagger}	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
0	1.664907	0.541552	-	-	-	-	-
1	1.529963	-	1.694790	-	-	-	-
2	1.422184	0.541287	-	2.974386	-	-	-
3	1.333401	-	1.693545	-	4.357839	-	-
4	1.258555	0.541107	-	2.971295	-	5.830681	-
5	1.194312	-	1.692659	-	4.352229	-	7.382622
6	1.138366	0.540975	-	2.969010	-	5.822126	-
7	1.089064	-	1.691987	-	4.347954	-	7.370873
8	1.045184	0.540872	-	2.967231	-	5.815445	-
9	1.005798	-	1.691453	-	4.344554	-	7.361506
10	0.970187	0.540789	-	2.965794	-	5.810035	-
11	0.937786	-	1.691016	-	4.341765	-	7.353806
$N \rightarrow \propto \ddagger$							
$[1 / 1]$	0.0	0.539706	1.684899	2.946776	4.302189	5.737402	7.242983
Variational $\$$	0.539705	1.684895	2.946757	4.302132	5.737273	7.242749	

+ In units of 10^{-3}.
\ddagger Fitting as in (1.5).
§ From Burrows et al (1989).

Table 3. Eigenvalues of $V^{\lambda}(\alpha, \beta)=\frac{1}{8} x^{2}+\frac{1}{8} x^{4}+\lambda x^{6}(C=1)$.

N	$\lambda+$	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
0	11.182358	0.417925	-	-	-	-	-
1	8.618720	-	1.428121	-	-	-	-
2	7.176474	0.412569	-	2.717549	-	-	-
3	6.227849	-	1.412940	-	4.187162	-	-
4	5.546471	0.410277	-	2.690939	-	5.799971	-
5	5.028373	-	1.405008	-	4.149381	-	7.533528
6	4.618360	0.408940	-	2.675227	-	5.751938	-
7	4.284110	-	1.399969	-	4.125150	-	7.476162
8	4.005305	0.408043	-	2.664607	-	5.719231	-
9	3.768465	-	1.396423	-	4.107981	-	7.435287
10	3.564256	0.407391	-	2.656841	-	5.695185	-
11	3.385991	-	1.393762	-	4.095033	-	7.404332
$N \rightarrow \infty \ddagger$							
$[1 / 1]$	0.0	0.401944	1.369206	2.590329	3.972558	5.484068	7.104994
$[2 / 2]$	0.0	0.401886	1.368949	2.589649	3.971193	-	-
Variational§	0.401885	1.368946	2.589646	3.971202	5.481792	7.101570	

\dagger In units of 10^{-3}.
\ddagger Fitting as in (1.5).
§ From Burrows et al (1989); see also Bender and Orszag (1978).
values employed. We observe that the comparison data quoted by Bender and Orszag (1978) requires Padé summation of at least 20 terms of the RSPT energy expansion for the ground state (cf Simon 1970) to achieve five figure accuracy, whereas our procedure requires no more than five successive N values to reproduce this result. It seems very likely that only a slightly more elaborate calculation (with higher N values, leading to higher-order finite determinants) can lead to results of much greater accuracy. We have not felt it worthwhile to undertake such a calculation in the present case.

The quartic oscillator problem

$$
\begin{equation*}
V=\frac{1}{2} x^{4} \tag{5.4}
\end{equation*}
$$

corresponds to $C=0$, and might be expected to lead to even poorer convergence. However, as may be seen from table 4 (which includes some comparison with variational results of Banerjee et al (1978)), the loss of accuracy is quite modest, and it seems likely that, by solving for slightly larger N values, more reliable results may be obtained in this case also.

Finally, we consider the symmetric double well potentials with $A<0$. The scaling relations (3.4) and (3.5) suggest that numerical convergence is still controlled by the magnitude of C, which is universally a positive quantity. Thus, we expect very similar rates of convergence for the corresponding potentials $V_{0}(\pm A, B)$ for N sufficiently large, although results for small N may be unrepresentative.

Table 5 contains our results for the case

$$
\begin{equation*}
V=-\frac{1}{2} x^{2}+\frac{1}{16} x^{4} \tag{5.5}
\end{equation*}
$$

for which $C \sim 6.35$. This potential has minima at $x= \pm 2$, with wells of unit depth, and a maximum at the origin. Only the lowest even and odd bound states have negativeenergy eigenvalues in accord with (4.10), but the convergence with increasing N is quite slow. However, even in this extreme case, extrapolation based on [1/1] and

Table 4. Eigenvalues of $V^{N}(\alpha, \beta)=\frac{1}{2} x^{4}+\lambda x^{6}(C=0)$.

N	λ^{\dagger}	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
0	9.539286	0.572357	-	-	-	-	-
1	6.786044	-	2.035813	-	-	-	-
2	5.422480	0.555858	-	3.999026	-	-	-
3	4.586010	-	1.996024	-	6.258794	-	-
4	4.011760	0.549686	-	3.935832	-	8.753288	-
5	3.588953	-	1.976824	-	6.174387	-	11.44447
6	3.262390	0.546279	-	3.900477	-	8.650428	-
7	3.001217	-	1.965115	-	6.122343	-	11.32540
8	2.786726	0.544066	-	3.877315	-	8.582486	-
9	2.606857	-	1.957083	-	6.086373	-	11.24260
10	2.453455	0.542490	-	3.860729	-	8.533542	-
11	2.320794	-	1.951064	-	6.059716	-	11.18096
$N \rightarrow \infty \ddagger$							
$[1 / 1]$	0.0	0.530449	1.900783	3.730007	5.826271	8.137006	10.62787
$[2 / 2]$	0.0	0.530182	1.899839	3.727864	5.822409	-	-
Variational§	0.530181	1.899837	3.727849	5.822373	8.130913	10.61919	

\dagger In units of 10^{-2}.
\ddagger Fitting as in (1.5).
§ From Banerjee et al (1978).

Table 5. Eigenvalues of $V^{N}(\alpha, \beta)=-\frac{1}{2} x^{2}+\frac{1}{16} x^{4}+\lambda x^{6}(C \simeq 6.35)$.

N	λ^{\dagger}	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
0	59.276890	0.090760	-	-	-	-	-
1	23.467592	-	0.432735	-	-	-	-
2	13.396387	-0.115123	-	1.260616	-	-	-
3	9.105126	-	0.145858	-	2.169894	-	-
4	6.832402	-0.200652	-	0.991161	-	3.219447	-
5	5.455951	-	0.022400	-	1.882683	-	4.377223
6	4.543444	-0.247463	-	0.864808	-	2.931888	-
7	3.898137	-	-0.045681	-	1.728986	-	4.091074
8	3.419263	-0.276941	-	0.792030	-	2.764246	-
9	3.050452	-	-0.088817	-	1.633214	-	3.912522
10	2.757933	-0.297249	-	0.744686	-	2.654176	-
11	2.520342	-	-0.118675	-	1.567605	-	3.790036
$N \rightarrow \infty \div$							
$[1 / 1]$	0.0	-0.173192	-0.244146	0.532946	1.218268	2.098154	3.082314
$[2 / 2]$	0.0	-0.423582	-0.308737	0.487921	1.156216	-	-
Variational§	-0.427588	-0.311981	0.485359	1.153236	2.030361	3.009322	

+ In units of 10^{-3}
\ddagger Fitting as in (1.5).
§ From Burrows et al (1989).
[2/2] approximants constructed from the lowest values of N yields quite promising results. These may be improved slightly, without going to the lengths of calculating solutions for higher N (which would allow construction of higher [L / M] approximants) simply by employing instead the results at the highest N values available. For example, for the lowest (negative energy) state of the double well potential, the [1/1] approximant based on $N=6,8,10$ yields -0.419649 and the [2/2] approximant based on $N=2, \ldots, 10$ yields -0.426449 , indicating dramatically enhanced convergence towards the variational result (-0.427588).

6. Discussion

Our approach depends critically on the availability of a series of exactly soluble model systems from whose spectra we may extrapolate with confidence. As N increases, $H^{N}(\alpha, \beta)$ approaches $H(A, B)$ steadily from above so that we obtain upper bounds only, and there appears to be no possibility of obtaining lower bounds in the present case. In principle, the exact eigenfunctions contain steadily increasing numbers of terms, and ultimately involve infinite series in the limit as $N \rightarrow \infty$ (cf (2.2) and (2.3)). However, the coefficients of higher powers diminish very rapidly, so that for all practical purposes, the series may be truncated.

The fitting of our results according to (1.5) clearly ought to be carried out at higher values of N than we have used and should probably employ more coefficients $\left\{P_{i}, Q_{i}\right\}$ if high accuracy is sought. What is remarkable about our present results is the surprising accuracy of the simplest application possible. We reiterate that the use of Pade summation in the standard approach requires very many orders of RSPT to be calculated whereas our procedure is comparable with low-order RSPT, and involves very much less computation. Its success serves to emphasise the crucial importance of the proper choice of H_{0} in perturbation problems.

Appendix

We list here the polynomial equations satisfied by $z=z^{N}(\gamma)$ for small N. For even N

$$
\begin{array}{rll}
N=0 & & z=0 \\
2 & z^{2}-(1+2 \gamma)=0 \\
4 & z^{3}-4(1+4 \gamma) z-16 \gamma=0 \\
6 & & z^{4}-10(1+6 \gamma) z^{2}-96 \gamma z+9(1+2 \gamma)(1+10 \gamma)=0 \\
8 & & z^{5}-20(1+8 \gamma) z^{3}-336 \gamma z^{2}+64\left(1+16 \gamma+46 \gamma^{2}\right) z+768 \gamma(1+8 \gamma)=0 . \tag{A5}
\end{array}
$$

For odd N

$$
\begin{array}{rll}
N=1 & z=0 \\
3 & z^{2}-(1+6 \gamma)=0 \\
5 & z^{3}-4(1+8 \gamma) z-16 \gamma=0 \\
7 & z^{4}-10(1+10 \gamma) z^{2}-96 \gamma z+9(1+6 \gamma)(1+14 \gamma)=0 \tag{A9}\\
9 & z^{5}-20(1+12 \gamma) z^{3}-336 \gamma z^{2}+64\left(1+24 \gamma+126 \gamma^{2}\right) z+768 \gamma(1+12 \gamma)=0
\end{array}
$$

where $\gamma=\beta / \alpha^{2}$.

References

Banerjee K, Bhatnager S P, Choudhy V and Kanwal S S 1978 Proc. R. Soc. A 360 575-86
Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill)
Burrows B L, Cohen M and Feldmann T 1989 to be published
Burrows B L and Core P W 1984 J. Phys. A: Math. Gen. 17 559-67
Cohen M and Feldmann T 1981 J. Phys. B: At. Mol. Phys. 14 2535-43
Cohen H D and Roothan C C J 1965 J. Chem. Phys. 43 S34-8
Löwdin P-O 1965 Phys. Rev. 139 A357-72
Simon B 1970 Ann. Phys., NY 58 76-136

[^0]: + In units of 10^{-5}.
 \ddagger Fitting as in (1.5).
 § From Burrows and Core (1984) and Burrows et al (1989).

