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Abstract. We exploit some exactly soluble model potentials V”(a ,  p )  = V ( A ,  B ) + A x 6  in 
order to extrapolate (as A + 0) reliable eigenvalues of the one-dimensional Schrodinger 
equations with either anharmonic or symmetric double well potentials of the form V ( A ,  E )  = 
;Ax2 + Ex4 ( E  > 0). Our procedure, which corresponds to low-order Rayleigh-Schrodinger 
perturbation theory, is found to be competitive with both high-order Pad6 summation of 
conventional RSPT and large-scale variational calculations using harmonic oscillator basis 
functions. 

1. Introduction 

One standard procedure for calculating bound-state solutions of the non-relativistic 
Schrodinger equation 

H+ = E+ (*I*) = 1 (1.1) 
is to employ Rayleigh-Schrodinger ( RS) perturbation theory ( FT). Conventional 
applications of RSPT begin with the formal decomposition of a slightly generalised 
Hamiltonian H ( A ) ,  usually written as 

H ( A )  = Ho+AH, .  (1.2) 
Here, Ho is a soluble model Hamiltonian and  AH,  is supposed small by comparison 
with Ho.  The expansion parameter A need not necessarily have physical significance; 
it serves mainly to monitor the terms of successively higher orders of the power series 
solutions of H ( A ) :  

(1.3) $ ( A )  =  CL^+ AG, + A ~ + ~ + .  . . 
and 

E ( A ) = E o + A E , + A 2 E 2 +  . . . .  (1.4) 
A solution of H ( A )  is often required only for a few isolated values of A (sometimes, 
only for the single value A = 1)  but in order to be meaningful, the expansions (1.3) 
and  (1.4) for I/J( A ) and E ( A  ) are assumed to converge in some region of the complex 
A-plane. To determine this region of convergence of E ( A ) ,  it is generally necessary 
to compute the large-n dependence of the high-order coefficients { E , , } ,  itself a formi- 
dable task. Moreover, for the RSPT solution to be useful numerically, convergence of 
the energy expansion (1.4) for any particular value A of interest should be reasonably 
rapid and be based on as few low-order coefficients as possible. 
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Much of the recent work on RSFT has confirmed the suspicion that many energy 
series (1.4) are in fact asymptotic, but that nevertheless, useful numerical results can 
be extracted from the leading expansion coefficients {E,}  by means of sophisticated 
summation techniques (see, for example, Bender and  Orszag 1978). A generally 
convenient representation of the energy then takes the form of a rational fraction 

Po+AP,+. . .+ALPL 
E ( A )  - [ L /  M ]  = 

~ + A Q , + . .  . + A , ~ Q ~  (1 .5 )  

which often yields acceptable accuracy for a wide range of A values of physical interest 
and  for L, M not too large. 

Now the whole procedure of conventional RSIT may be viewed alternatively as 
follows. Instead of solving H ( A o )  exactly for an  isolated parameter value A o ,  we 
instead solve H ( A )  approximately for some range of values of A ,  but only up to some 
predetermined power of A ; this solution is only approximate insofar as higher-order 
terms are not calculated. Nevertheless, an  energy expression such as (1.5), based on 
only the first few orders of RSPT, is often remarkably accurate (Cohen and Feldmann 
1981). 

However, it may occasionally happen that it is possible to obtain an exact solution 
of H ( h )  for a discrete set of isolated values A ,  ( i  = 1, .  . . , L +  M + 1)  but not for some 
particular A. of interest. An expression of the form of (1.5) may then be constructed 
and  used to interpolate (or extrapolate) a value for E(Ao)  from the set { E ( A l ) } .  
A procedure which is conceptually very similar to the present one was employed some 
years ago to calculate electric dipole polarisabilities of atoms within the Hartree-Fock 
approximation (Cohen and  Roothaan 1965). However, to our knowledge, no previous 
application has employed exact solutions. 

In the present work, we apply these ideas to a set of one-dimensional Schrodinger 
equations with potentials of the general form: 

V (  A ,  B )  = +AX* + Bx4 ( B > O ) .  (1.6) 

This set includes two subsets of some general interest, namely the quartic anharmonic 
oscillator ( A  > 0) and the symmetric double well potential ( A  < 0). The pure quartic 
oscillator ( A  = 0) may be viewed as a natural bridging case between these subsets. Our 
procedure is as follows. First, we shall obtain the lower eigenvalue spectrum for the 
model potentials 

(1.7) 

which admit of exact solutions for arbitrary a and p, provided that N is any integer. 
We then choose ( N ,  cy, p )  for a series of integers N so that 

V ” ( a , P ) =  V ( A ,  B ) + A x 6  A = ip ’ .  (1.8) 

Finally, we represent the corresponding € ” ( a ,  p )  by means of a rational fraction 
(1.51, and  extrapolate from a series of small (but finite) values of A to obtain the limit 

(1.9) 

V N ( a ,  p )  =+[a’- ( 2 N + 3 ) P ] X ? +  apx4+fp’x6 

E ( A ,  B ) = l i m  A -0  E Y ( a , p ) .  

In some sense, our procedure is the reverse of standard R s P r ,  insofar as we seek 
results in the limit as A becomes steadily smaller. We may therefore anticipate that 
this process will prove more reliable than the usual applications with increasing A.  
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2. Solutions for the model Hamiltonian H ' % ( a ,  0 )  

In order to obtain solutions of the Hamiltonian 

1 d2  H 'v ( f f ,  p )  = -- - dx2+ VY(f f ,  P )  

it is convenient to change the scale according to 

x+x / f f I ' '  PI f f2+  Y 

so that 

N 1 d' 
2 d x  

H N ( f f , P ) +  ffh"(y) h ( y)  = -- ~ + f [  1 - ( 2 N  + 3)ylx '  + YX' +$y2x6 

which implies that 

E"(ff, P ) +  ffE"(1, y ) .  

Standard analysis now shows that all eigenfunctions of h"(y)  have definite (even or 
odd)  parity. The even-parity eigenfunctions may be written in the form 

and the odd-parity eigenfunctions 

N For simplicity in the following, we write a2,  for a-&,, a,,,, for and E for 
E N ( l ,  y) .  The appropriate recurrence relations for the coefficients { a z , } ,  are then 
found to be 

i ( ~ + 2 - - 2 i ) y u , , - ~ + [ ~  - ( 2 i + 4 ) ] a z , + ( 2 i + l ) a z , + , = ~  (2.7) 

i (  N + 1 - 2 i )  yaz, - , + [ E  - (2  i + %)I a,,, , + (2 i + 3 )  a,, + 3  = 0. (2 .8)  

and for the coefficients { a z l T , } :  

In general, these equations lead to separate Hill determinants of injinite order, which 
must be truncated and solved for successively higher j inite order k, k + 1, k + 2 ,  . . . , 
until numerical convergence of the eigenvalues is sufficient to allow reliable extrapola- 
tion to k + CO. 

However, if N is any even integer ( N  = 2M,  say) the Hill determinant derived from 
(2 .7)  splits into a j inite ( M  + 1)-dimensional determinant for the lowest ( M  + 1 )  
even-parity solutions, together with an infinite-order determinant for the remainder. 
The finite determinant may then be solved exactly (albeit numerically) and the corre- 
sponding lowest ( M  + 1) even-parity eigenfunctions all have the form: 

( k = 0 , 1 ,  . . . ,  M ) .  (2.9) 

The remaining even-parity solutions, and all odd-parity solutions contain infinite series, 
and are given by (2.5) and  (2 .6 ) .  

(YX')' +;Y = exp[-(fx2+iyx4)] a;::, - 
U 

I =a I !  
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Similarly, if N is an  odd integer ( N  = 2M + 1, say) the Hill determinant derived 
from ( 2 . 8 )  splits into a finite ( M  + 1)-dimensional determinant for the lowest ( M +  1 )  
odd-parity solutions, together with an infinite-order determinant for the remainder. 

For example, in the case N = 2M = 6, and  if we write for convenience E = z + i ,  
the lowest four even-parity solutions satisfy 

z - 3  1 0 

z + 3  

(2.10) 

In summary, for any given integer value of N ,  the low-lying eigenvalues of H “ ( a ,  p )  
can be written conveniently in one of the forms: 

N = 2 M  EZk(CY,P)=CY[zk(Y)+M+tl ( k = O , .  . . M )  ( 2 . 1 1 )  

N = 2 M + 1  E,k+,(CY, P )  = 4 Z k ( Y ) + M + 3 1  ( k  = 0 ,  . . . M )  (2.12) 

or 

where z k ( y )  satisfies a polynomial equation of degree M + 1 .  That all roots z k ( y )  are 
necessarily real follows from the tridiagonal form of these Hill determinant equations. 
For convenience, we gather in the appendix the explicit equations for all N S 9 .  

3. Solutions for H ( A ,  B )  

To obtain eigenvalues for H ( A ,  B ) ,  we now equate the coefficients of x2 and x 4  in 
V N ( a ,  p )  and V ( A ,  B ) :  

CY’- ( 2 N  + 3 ) p  = A ( 3 . 1 )  

ap = B. ( 3 . 2 )  

In order to describe bound states, we require a real solution with p > 0. For B > 0, it 
is easily verified that such a solution always exists. For any given pair of values of A 
and B, we thus obtain a set of parameters a, y = @ / a 2  and A = p 2 / 2  for each integral 
value of N considered. The energy calculated for successive (even or odd)  values of 
N may then be fitted to ( l S ) ,  and finally extrapolated to A + 0. 

For sufficiently large N ,  a solution of ( 3 . 1 )  and (3 .2)  is given asymptotically by 

a - ( 2 N + 3 ) 1 ’ 3 B 1 ’ 3  y - ( 2 N  + 3 ) - ’  A - B 4 ! 3 ( 2 N + 3 ) - 2 ’ 3 / 2  ( 3 . 3 )  

independent of both the magnitude and the sign of A. Hence, the convergence of 
€ ( A )  to Eo is ultimately controlled mainly by the factor ( 2 N + 3 ) - ” ’ ,  and even the 
effect of B should be negligible if N is sufficiently large. Thus, there appears to be 
no difference in principle between the cases A > 0 (anharmonic oscillator), A = 0 (pure 
quartic oscillator) and A < 0 (double well potential), although the asymptotic results 
of ( 3 . 3 )  become exact for all N 3 0 only in the limiting case when A = 0. However, 
for different given values of A and B, we expect that the exact solutions E’ ( C Y ,  p )  of 
H N ( a ,  p )  will reveal different rates of convergence towards E ( A ,  B )  for low N .  

Note that, quite generally, the energy E ( A ,  B )  satisfies the scaling relation: 

E ( T ~ A ,  v 3 B )  = T E ( A ,  B )  (3 .4)  
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and in particular (provided A,  B # 0) 

E ( A ,  B) = IAI”*E( 1, C-3’2)  = B 1 ’ 3 E ( C ,  1 )  

where 

C = IAI/B2/’. 

As we shall see, convergence is most rapid when C is large. Note that under the 
transformation A +  v 2 A ,  B + v 3 B  of (3.4), C of (3.6) is independent of 7, as is y = p / a 2  
when a, p are determined from (3.1) and  (3.2). 

4. Some bounding properties for the eigenvalues 

It is clear from the definition of V N ( a ,  P )  in (1.7) that for jixed values of a and p 
and fo ra l l  M s N > O  

(4.1) 

Consequently, the ordered eigenvalues of H M ( a ,  p )  and H N ( a ,  p )  satisfy (see, for 
example, Lowdin 1965) 

EkM(a, m a ,  P )  ( k = 0 ,  1 , .  , . )  (4.2) 

so that, for each k, the eigenvalue E p ( a ,  p )  is bounded from above by EF-’(a ,  p )  
and from below by E r ” ( a ,  p ) .  

However, what we actually calculate are eigenvalues of H N ( a N ,  p h . )  for a series 
of successive (even or odd)  integer values of N,  with aN, PN chosen according to (3.1) 
and  (3.2) forjixed values of A and B so that aN, ph.  are changing with N. Now 

P ( a ,  p )  s V ” ( a ,  P ) .  

V”(aN,PN)= V ( A ,  B ) + $ L x 6  (4.3) 

O S P M s p N  (4.4) 

so that the ordered eigenvalues of H (  A, B ) ,  H M  ( a M r  PM ) and H ( a N ,  /3,+ ) also satisfy 

&(A,  B ) s  EkM(aM, P M ) G  EF(aw, P N )  (4.5) 

Thus, for successive positive integer values of N, the eigenvalues of H ( ah,  p N )  form 
steadily decreasing sequences which converge from above to the eigenvalues of H ( A ,  B ) .  
These results are also independent of the magnitude and sign of A. 

In the particular case of double well potentials, it may be more convenient to write 
the potential 

(4.6) 
and note that there is a local maximum at x=O where V,,,,,=O, and minima at  
x = * f ( A / B ) ” ’  where V,, ,=--&A2/B.  A few of the lower levels of H ( - A ,  B )  may 
then lie below zero energy, and we may obtain an  upper bound to the number of such 
levels as follows. 

For all real p, the potential V (  -A ,  B )  is everywhere bounded below by the harmonic 
potential 

and it is easily shown that, for M 5 N,  

( k  = 0, 1, . . . ). 

V (  -A ,  B )  = -;Ax2 + Bx4 ( A ,  B > 0) 

V ( p ) = - -  
16 B (4.7) 
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whose exact eigenvalues are given by 

&(PI = ( k  + 9 P -%A + P2) ’ /B  ( k  = 0, 1, . . .). (4.8) 
The number m of negative energy levels of V ( p )  satisfies 

m & ( A  +p’ ) ’ /  Bp + (4.9) 
and m clearly provides an upper bound to the number of negative energy levels of 
V(-A,  B ) .  However, the parameter p is still at our disposal, and if we minimise m 
as a function of p ,  we obtain the least upper bound 

(4.10) 

where the quantity C is exactly as in ( 3 . 6 ) .  

5. Some representative results for small N 

Traditionally, anharmonic oscillators with A > 0 and A >> B have been treated by RSPT 

starting with the harmonic oscillator model (coresponding to B = 0), but the energy 
series is asymptotic (Simon 1970), and fails to converge even for quite small B, 
particularly for excited states. Nevertheless, accurate results can be obtained from the 
RSPT series coefficients by means of Pad6 summation (see, for example, Simon 1970, 
Bender and Orszag 1978). Our procedure is more efficient, as we shall see. 

As a first example, consider 

(5.1) 
(i.e. A = 1, B = &). Table 1 displays the exact results obtained for the lowest six states 
of V N ( q  p ) ,  calculated with N S  10 for even-parity states, and with N S  11 for 

v=’ 2 + L  4 2x IOOX 

Table 1. Eigenvalues of V ’ ( a , p ) = f x 2 + & x 4 + A x 6  (C=21 .54) .  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

4.8564 
4.7673 
4.6828 
4.6026 
4.5263 
4.4536 
4.3842 
4.3 179 
4.2544 
4.1935 
4.1351 
4.0790 

0.507338 - 
- 1.536 180 
0.507335 - 
- 1.536 162 
0.507332 - 
- 1.536 146 
0.507330 - 
- 1.536 130 
0.507328 - 
- 1.536 117 
0.507326 - 
- 1.536 104 

- 
- 
2.592 615 

2.592 556 

2.592 502 

2.592 453 

2.592 408 

- 

- 

- 

- 

- 

- 
3.675 241 

3.675 108 

3.674 986 

3.674 874 

3.674 772 

- 

- 

- 

- 

- - 
4.782821 - 
- 5.914 244 
4.782574 - 
- 5.913 845 
4.782348 - 
- 5.913 478 
4.782 141 - 
- 5.913 141 

N-.Woi: 
[1/0] 0.0 0.507 256 1.535 649 2.590851 3.671 114 4.774962 5.901 130 
[1/1] 0.0 0.507 256 1.535 649 2.590 845 3.671 083 4.774 874 5.901 120 
Variational5 0.507256 1.535 648 2.590846 3.671 095 4.774913 5.901 027 

t In units of io+.  
$ Fitting as  in (1.5). 
§ From Burrows and  Core (1984) and  Burrows er a/  (1989). 
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odd-parity states. For each value of N, we list the calculated values of A as well as 
the derived energies, Also listed are the coefficients Po obtained by fitting the exact 
results at the lowest available values of N for each state to the rational fraction [ L / M ]  
of (1 .5) .  In this example, A is very small even for N = 0, and  it is therefore not 
surprising that our extrapolations based on only two or three calculated values repro- 
duce the variational values obtained with a fairly large basis of 25 harmonic oscillator 
functions (Burrows and  Core 1984, Burrows et a1 1988). 

We list only exact values of the calculated energy levels, so that even eigenvalues 
are given only for even N and odd eigenvalues only for odd N. It would be possible 
to obtain approximate values at intermediate values of N in each case, but these would 
contribute nothing towards increasing the accuracy of the extrapolations as N -+ CO. 

Next, we consider the example 

(5.2) 
which was expected to display rather poorer convergence since here C-6.35 by 
comparison with C - 21.54 in the previous case. Results are gathered in table 2 for 
the lowest six states (three of each parity) together with the coefficient Po obtained 
from the [ 1 /  11 approximant fited at the three lowest N values available for each state. 
These approximations also reproduce the directly computed values for all higher N 
to five or six digits. Although the relevant A values are now two orders of magnitude 
larger than those of table 1 our extrapolated values are still remarkably accurate. 

v=’  2x 2 +&x4 

A more stringent test is provided by the example 

v = i x ’ +  Qx4 (5 .3)  
for which C = 1 .  Our results are presented in table 3, together with the coefficients Po 
of [ 1 / 1 ]  and [2/2] approximants, which may be compared with both variational and  
Pad6 summed high-order RSF-T values (Bender and Orszag 1978). Even here, our results 
are quite satisfactory, even though the A values are now quite large for the smaller N 

Table 2. Eigenvalues of V ’ ( a , p ) = f x 2 + & x 4 + h x 6  CC-6.35). 

0 1.664 907 
1 1.529 963 
2 1.422 184 
3 1.333 401 
4 1.258 555 
5 1.194 3 12 
6 1.138 366 
7 1.089 064 
8 1.045 184 
9 1.005 798 

10 0.970 187 
11 0.937 786 

N + E $  
[1/1] 0.0 
Variational§ 

0.541 552 - 
- 1.694 790 
0.541 287 - 
- 1.693 545 
0.541 107 - 
- 1.692 659 
0.540975 - 

1.691 987 
0.540872 - 

1.691 453 
0.540789 - 
- 1.691 016 

- 

- 

0.539 706 1.684 899 
0.539 705 1.684 895 

- 
2.974 386 

2.971 295 

2.969 010 

2.967 23 1 

2.965 794 

- 

- 

- 

- 

2.946 776 
2.946 757 

- 
4.357 839 

4.352 229 

4.347 954 

4.344 554 

4.341 765 

- 

- 

- 

- 

4.302 189 
4.302 132 

- 
- 
5.830 681 

5.822 126 

5.815 445 

5.810 035 

- 

- 

- 

- 

5.737 402 
5.737 213 

- 
7.382 622 

7.370 873 

7.361 506 

7.353 806 

- 

- 

- 

7.242 983 
7.242 149 

f In  units of 1 0 - ~  
$ Fitting as in (1  5) .  
5 From Burrows et a /  (1989) 
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Table 3. Eigenvalues of V ’ ( a , P ) = ~ x 2 + Q x J + h x 6  ( C =  1 )  

0 11.182358 
1 8.618 720 
2 7.176 474 
3 6.227 849 
4 5.546 471 
5 5.028 373 
6 4.618 360 
7 4.284 110 
8 4.005 305 
9 3.768 465 

10 3.564 256 
11 3.385 991 

N + &  
[1/1] 0.0 
[2/2] 0.0 
Variational5 

0.417 925 

0.412 569 

0.410 277 

0.408 940 

0.408 043 

0.407 391 

- 

- 

- 

- 

- 

- 

0.401 944 
0.401 886 
0.401 885 

- 
1.428 121 

1.412 940 

1.405 008 

1.399 969 

1.396 423 

1.393 762 

- 

- 

- 

- 

- 

1.369 206 
1.368 949 
1.368 946 

- 
- 
2.717 549 

2.690 939 

2.675 227 

2.664 607 

2.656 841 

- 

- 

- 

- 

- 

2.590 329 
2.589 649 
2.589 646 

- 
- 
- 
4.187 162 

4.149 381 

4.125 150 

4.107 981 

4.095 033 

- 

- 

- 

- 

3.972 558 
3.971 193 
3.971 202 

- 
- 
- 
- 
5.799 971 

5.751 938 

5.719 231 

5.695 185 

- 

- 

- 

- 

5.484 068 

5.481 792 
- 

- 
- 
- 
- 
- 
7.533 528 

7.476 162 

7.435 287 

7.404 332 

- 

- 

- 

7.104 994 

7.101 570 
- 

t In units of 
$ Fitting as in (1.5). 
5 From Burrows et a/  (1989); see also Bender and Orszag (1978). 

values employed. We observe that the comparison data quoted by Bender and Orszag 
(1978) requires Pad6 summation of at least 20 terms of the RSPT energy expansion for 
the ground state (cf Simon 1970) to achieve five figure accuracy, whereas our procedure 
requires n o  more than five successive N values to reproduce this result. It seems very 
likely that only a slightly more elaborate calculation (with higher N values, leading 
to higher-order finite determinahts) can lead to results of much greater accuracy. We 
have not felt it worthwhile to undertake such a calculation in the present case. 

The quartic oscillator problem 

v = f x 4  (5.4) 
corresponds to C = 0, and  might be expected to lead to even poorer convergence. 
However, as may be seen from table 4 (which includes some comparison with variational 
results of Banerjee et a1 (1978)), the loss of accuracy is quite modest, and it seems 
likely that, by solving for slightly larger N values, more reliable results may be obtained 
in this case also. 

Finally, we consider the symmetric double well potentials with A < 0. The scaling 
relations (3.4) and (3.5) suggest that numerical convergence is still controlled by the 
magnitude of C, which is universally a positive quantity. Thus, we expect very similar 
rates of convergence for the corresponding potentials V,(*A, B )  for ,Y sufficiently 
large, although results for small N may be unrepresentative. 

Table 5 contains our results for the case 

for which C - 6.35. This potential has minima at x = * 2 ,  with wells of unit depth, and  
a maximum at the origin. Only the lowest even and odd bound states have negative- 
energy eigenvalues in accord with (4.10), but the convergence with increasing N is 
quite slow. However, even in this extreme case, extrapolation based on [ 1 / 1 ]  and 
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Table 4. Eigenvalues of V ' ( a , P )  =fx4+Ax6  ( C  = 0 )  

1311 

0 9.539 286 
1 6.786 044 
2 5.422 480 
3 4.586 010 
4 4.01 1 760 
5 3.588 953 
6 3.262 390 
7 3.001 217 
8 2.786 726 
9 2.606 857 

10 2.453 455 
11 2.320 794 

N + m $  
[1/1] 0.0 
[2/2] 0.0 
Variational5 

0.572 357 

0.555 858 

0.549 686 

0.546 279 

0.544 066 

0.542 490 

- 

- 

- 

- 

- 

- 

0.530 449 
0.530 182 
0.530 181 

- 
2.035 813 

1.996 024 

1.976 824 

1.965 115 

1.957 083 

1.95 1 064 

- 

- 

- 

- 

- 

1.900 783 
1.899 839 
1.899 837 

- - 
3.999026 - 
- 6.258 794 
3.935832 - 
- 6.174387 
3.900477 - 
- 6.122 343 
3.877315 - 
- 6.086 373 
3.860729 - 
- 6.059 716 

3.730 007 5.826 271 
3.727 864 5.822 409 
3.727 849 5.822 373 

- 
- 
- 
- 
8.753 288 

8.650 428 

8.582 486 

8.533 542 

- 

- 

- 

- 

8.137 006 

8.130913 
- 

- 
- 
- 
- 
- 
1 1.444 47 

11.325 40 

11.242 60 

11.18096 

- 

- 

- 

10.627 87 

10.619 19 
- 

t In units of 
$ Fitting as in (1.5). 
5 From Banerjee et al (1978) 

Table 5. Eigenvalues of V \ ( a , p ) = - $ x 2 + & x 4 + A x 6  ( C 1 6 . 3 5 ) .  

N A: E, E ,  E2 E3 E4 € 5  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  

N + x $  
[1/11 
[2/21 

59.276 890 
23.467 592 
13.396 387 
9.105 126 
6.832 402 
5.455 951 
4.543 444 
3.898 137 
3.419 263 
3.050 452 
2.757 933 
2.520 342 

0.090 760 

-0.115 123 
- 

- 
-0.200 652 
- 
-0.247 463 
- 
-0.276 941 
- 
-0.297 249 
- 

- 
0.432 735 

0.145 858 

0.022 400 

- 

- 

- 
-0.045 681 
- 
-0.088 817 
- 
-0.118 675 

- 
- 
1.260 616 

0.991 161 

0.864 808 

0.792 030 

0.744 686 

- 

- 

- 

- 

- 

- 
- 
- 
2.169 894 

1.882 683 

1.728 986 

1.633 214 

1.567 605 

- 

- 

- 

- 

0.0 -0.173 192 -0.244 146 0.532 946 1.218 268 
0.0 -0.423 582 -0.308 737 0.487 921 1.156 216 

Variational$ -0.427 588 -0.311 981 0.485 359 1.153 236 

- 
- 
- 
- 
3.219 447 

2.931 888 

2.764 246 

2.654 176 

- 

- 

- 

- 

2.098 154 

2.030 361 
- 

- 
- 
- 
- 
- 
4.377 223 

4.091 074 

3.912 522 

3.790 036 

- 

- 

- 

3.082 314 

3.009 322 
- 

t In units of 
f Fitting as in (1,5) .  
5 From Burrows et al (1989). 
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[2/2] approximants constrbcted from the lowest values of N yields quite promising 
results. These may be improved slightly, without going to the lengths of calculat- 
ing solutions for higher N (which would allow construction of higher [ L / M ]  
approximants) simply by employing instead the results at the highest N values available. 
For example, for the lowest (negative energy) state of the double well potential, the 
[1/1] approximant based on N = 6, 8, 10 yields -0.419 649 and the [ 2 / 2 ]  approximant 
based on N = 2, . , , , 10 yields -0.426 449, indicating dramatically enhanced conver- 
gence towards the variational result (-0.427 588). 

6. Discussion 

Our approach depends critically on the availability of a series of exactly soluble model 
systems from whose spectra we may extrapolate with confidence. As N increases, 
H N ( q  p )  approaches H ( A ,  B )  steadily from above so that we obtain upper bounds 
only, and there appears to be no possibility of obtaining lower bounds in the present 
case. In principle, the exact eigenfunctions contain steadily increasing numbers of 
terms, and ultimately involve injinite series in the limit as N + w  (cf (2.2) and (2.3)). 
However, the coefficients of higher powers diminish very rapidly, so that for all practical 
purposes, the series may be truncated. 

The fitting of our results according to (1.5) clearly ought to be carried out at higher 
values of N than we have used and should probably employ more coefficients {Pi, Q,} 
if high accuracy is sought. What is remarkable about our present results is the surprising 
accuracy of the simplest application possible. We reiterate that the use of Pad6 
summation in the standard approach requires very many orders of RSPT to be calculated 
whereas our procedure is comparable with low-order RSPT, and involves very much 
less computation. Its success serves to emphasise the crucial importance of the proper 
choice of Ho in perturbation problems. 

Appendix 

We list here the polynomial equations satisfied by z = z N  ( y )  for small N.  For even N 

N=O z = o  (AI)  

2 z 2 - ( 1 + 2 y ) = 0  (‘42) 

4 z3 -4(1 + ~ Y ) z  - 16y=O (‘43) 
6 z4-  lO(1 +6y)z2-96yz+9(1 + 2 y ) ( l +  1 0 ~ )  = 0 (A4) 
8 

For odd N 

N = l  z = o  (A6) 
3 2’ - (1 4- 6 7 )  = 0 (A7) 

(-48) 
(‘49) 

(A101 

Z’ - 20( 1 + 8 y ) z 3  - 3 3 6 ~ ~ ~  + 64( 1 + 167 + 4 6 ~ ’ ) ~  + 768y( 1 + 8 y )  = 0. (A5) 

5 

7 

9 

z 3  - 4( 1 + 8 7 ) ~  - 167 = 0 

z4 - 10( 1 + 1 0 ~ ) ~ ’  - 9 6 ~ ~  + 9( 1 + 6y)(  1 + 1 4 ~ )  = 0 
z5  - 2O( 1 + 1 2 ~ ) ~ ~  - 3 3 6 ~ ~ ~  + 64( 1 + 247 + 1 2 6 ~ ’ ) ~  + 768y( 1 + 12y) = 0 

where y = PI.’. 
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